[3] The Vector Space
Linear Combinations

An expression

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

is a \textit{linear combination} of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

The scalars $\alpha_1, \ldots, \alpha_n$ are the \textit{coefficients} of the linear combination.

\textbf{Example:} One linear combination of $[2, 3.5]$ and $[4, 10]$ is

$$-5 [2, 3.5] + 2 [4, 10]$$

which is equal to $[-5 \cdot 2, -5 \cdot 3.5] + [2 \cdot 4, 2 \cdot 10]$

Another linear combination of the same vectors is

$$0 [2, 3.5] + 0 [4, 10]$$

which is equal to the zero vector $[0, 0]$.

\textbf{Definition:} A linear combination is \textit{trivial} if the coefficients are all zero.
Linear Combinations: JunkCo

The JunkCo factory makes five products:

![Garden Gnome](image1.png) ![Hula Hoop](image2.png) ![Slinky](image3.png) ![Silly Putty](image4.png) ![Salad Shooter](image5.png)

using various resources.

<table>
<thead>
<tr>
<th></th>
<th>metal</th>
<th>concrete</th>
<th>plastic</th>
<th>water</th>
<th>electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>garden gnome</td>
<td>0</td>
<td>1.3</td>
<td>0.2</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>hula hoop</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>slinky</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>silly putty</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>salad shooter</td>
<td>0.15</td>
<td>0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

For each product, there is a vector specifying how much of each resource is used per unit of product.

For making one gnome:
\[\mathbf{v}_1 = \{\text{metal}:0, \text{concrete}:1.3, \text{plastic}:0.2, \text{water}:0.8, \text{electricity}:0.4\} \]
For making one gnome:
\[\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:0.8, electricity:0.4} \} \]
For making one hula hoop:
\[\mathbf{v}_2 = \{ \text{metal:0, concrete:0, plastic:1.5, water:0.4, electricity:0.3} \} \]
For making one slinky:
\[\mathbf{v}_3 = \{ \text{metal:0.25, concrete:0, plastic:0, water:0.2, electricity:0.7} \} \]
For making one silly putty:
\[\mathbf{v}_4 = \{ \text{metal:0, concrete:0, plastic:0.3, water:0.7, electricity:0.5} \} \]
For making one salad shooter:
\[\mathbf{v}_5 = \{ \text{metal:1.5, concrete:0, plastic:0.5, water:0.4, electricity:0.8} \} \]

Suppose the factory chooses to make \(\alpha_1 \) gnomes, \(\alpha_2 \) hula hoops, \(\alpha_3 \) slinkies, \(\alpha_4 \) silly putties, and \(\alpha_5 \) salad shooters.

Total resource utilization is
\[\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 \]
Linear Combinations: JunkCo: Industrial espionage

Total resource utilization is $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$

Suppose I am spying on JunkCo.

I find out how much metal, concrete, plastic, water, and electricity are consumed by the factory.

That is, I know the vector \mathbf{b}. Can I use this knowledge to figure out how many gnomes they are making?

Computational Problem: *Expressing a given vector as a linear combination of other given vectors*

- **input:** a vector \mathbf{b} and a list $[\mathbf{v}_1, \ldots, \mathbf{v}_n]$ of vectors
- **output:** a list $[\alpha_1, \ldots, \alpha_n]$ of coefficients such that

 $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$

 or a report that none exists.

Question: Is the solution unique?
Lights Out

Button vectors for 2×2 *Lights Out*:

\[
\begin{array}{c}
\bullet \bullet \\
\bullet \\
\end{array}
\quad
\begin{array}{c}
\bullet \\
\bullet \bullet \\
\bullet \\
\end{array}
\quad
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \bullet \\
\bullet \\
\end{array}
\quad
\begin{array}{c}
\bullet \bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\]

For a given initial state vector $s =
\begin{array}{c}
\bullet \\
\bullet \\
\end{array}$, which subset of button vectors sum to s?

Reformulate in terms of linear combinations.

Write

\[
\begin{array}{c}
\bullet \\
\bullet \\
\end{array}
= \alpha_1
\begin{array}{c}
\bullet \\
\bullet \bullet \\
\bullet \\
\end{array}
+ \alpha_2
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \bullet \\
\bullet \\
\end{array}
+ \alpha_3
\begin{array}{c}
\bullet \bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
+ \alpha_4
\begin{array}{c}
\bullet \bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\]

What values for $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ make this equation true?

Solution: $\alpha_1 = 0, \alpha_2 = 1, \alpha_3 = 0, \alpha_4 = 0$

Solve an instance of *Lights Out* \Rightarrow Which set of button vectors sum to s?

\Rightarrow Find subset of $GF(2)$ vectors v_1, \ldots, v_n whose sum equals s \Rightarrow Express s as a linear combination of v_1, \ldots, v_n
We can solve the puzzle if we have an algorithm for

Computational Problem: Expressing a given vector as a linear combination of other given vectors
Definition: The set of all linear combinations of some vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) is called the *span* of these vectors. Written \(\text{Span} \{ \mathbf{v}_1, \ldots, \mathbf{v}_n \} \).
Span: Attacking the authentication scheme

If Eve knows the password satisfies

\[
\begin{align*}
 a_1 \cdot x &= \beta_1 \\
 \vdots \\
 a_m \cdot x &= \beta_m
\end{align*}
\]

Then she can calculate right response to any challenge in Span \(\{a_1, \ldots, a_m\} \):

Proof: Suppose \(a = \alpha_1 a_1 + \cdots + \alpha_m a_m \). Then

\[
\begin{align*}
 a \cdot x &= (\alpha_1 a_1 + \cdots + \alpha_m a_m) \cdot x \\
 &= \alpha_1 a_1 \cdot x + \cdots + \alpha_m a_m \cdot x \quad \text{by distributivity} \\
 &= \alpha_1 (a_1 \cdot x) + \cdots + \alpha_m (a_m \cdot x) \quad \text{by homogeneity} \\
 &= \alpha_1 \beta_1 + \cdots + \alpha_m \beta_m
\end{align*}
\]

Question: Any others? Answer will come later.
Quiz: How many vectors are in \(\text{Span} \ \{[1, 1], [0, 1]\} \) over the field \(GF(2) \)?

Answer: The linear combinations are

\[
\begin{align*}
0 [1, 1] + 0 [0, 1] &= [0, 0] \\
0 [1, 1] + 1 [0, 1] &= [0, 1] \\
1 [1, 1] + 0 [0, 1] &= [1, 1] \\
1 [1, 1] + 1 [0, 1] &= [1, 0]
\end{align*}
\]

Thus there are four vectors in the span.
Span: $GF(2)$ vectors

Question: How many vectors in Span $\{[1, 1]\}$ over $GF(2)$?

Answer: The linear combinations are

\[
\begin{align*}
0 [1, 1] &= [0, 0] \\
1 [1, 1] &= [1, 1]
\end{align*}
\]

Thus there are two vectors in the span.

Question: How many vectors in Span $\{\}$?

Answer: Only one: the zero vector

Question: How many vectors in Span $\{[2, 3]\}$ over \mathbb{R}?

Answer: An infinite number: $\{\alpha [2, 3] : \alpha \in \mathbb{R}\}$
Forms the line through the origin and $(2, 3)$.
Generators

Definition: Let \mathcal{V} be a set of vectors. If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are vectors such that $\mathcal{V} = \text{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ then

- we say $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a *generating set* for \mathcal{V};
- we refer to the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ as *generators* for \mathcal{V}.

Example: $\{[3, 0, 0], [0, 2, 0], [0, 0, 1]\}$ is a generating set for \mathbb{R}^3.

Proof: Must show two things:

1. Every linear combination is a vector in \mathbb{R}^3.
2. Every vector in \mathbb{R}^3 is a linear combination.

First statement is easy: every linear combination of 3-vectors over \mathbb{R} is a 3-vector over \mathbb{R}, and \mathbb{R}^3 contains all 3-vectors over \mathbb{R}.

Proof of second statement: Let $[x, y, z]$ be any vector in \mathbb{R}^3. I must show it is a linear combination of my three vectors....

$$[x, y, z] = (x/3) [3, 0, 0] + (y/2) [0, 2, 0] + z [0, 0, 1]$$
Generators

Claim: Another generating set for \mathbb{R}^3 is $\{[1, 0, 0], [1, 1, 0], [1, 1, 1]\}$

Another way to prove that every vector in \mathbb{R}^3 is in the span:

- We already know $\mathbb{R}^3 = \text{Span} \{[3, 0, 0], [0, 2, 0], [0, 0, 1]\}$,
- so just show $[3, 0, 0], [0, 2, 0], \text{and} [0, 0, 1]$ are in $\text{Span} \{[1, 0, 0], [1, 1, 0], [1, 1, 1]\}$

\[
\begin{align*}
[3, 0, 0] &= 3 [1, 0, 0] \\
[0, 2, 0] &= -2 [1, 0, 0] + 2 [1, 1, 0] \\
[0, 0, 1] &= -1 [1, 0, 0] - 1 [1, 1, 0] + 1 [1, 1, 1]
\end{align*}
\]

Why is that sufficient?

- We already know any vector in \mathbb{R}^3 can be written as a linear combination of the old vectors.
- We know each old vector can be written as a linear combination of the new vectors.
- We can convert a linear combination of linear combination of new vectors into a linear combination of new vectors.
Generators

We can convert a linear combination of linear combination of new vectors into a linear combination of new vectors.

▶ Write \([x, y, z]\) as a linear combination of the old vectors:

\[
[x, y, z] = \left(\frac{x}{3}\right)[3, 0, 0] + \left(\frac{y}{2}\right)[0, 2, 0] + z[0, 0, 1]
\]

▶ Replace each old vector with an equivalent linear combination of the new vectors:

\[
[x, y, z] = \left(\frac{x}{3}\right)\left(3 [1, 0, 0]\right) + \left(\frac{y}{2}\right)\left(-2 [1, 0, 0] + 2 [1, 1, 0]\right)
+ z \left(-1 [1, 0, 0] - 1 [1, 1, 0] + 1 [1, 1, 1]\right)
\]

▶ Multiply through, using distributivity and associativity:

\[
[x, y, z] = x [1, 0, 0] - y [1, 0, 0] + y [1, 1, 0] - z [1, 0, 0] - z [1, 1, 0] + z [1, 1, 1]
\]

▶ Collect like terms, using distributivity:

\[
[x, y, z] = (x - y - z) [1, 0, 0] + (y - z) [1, 1, 0] + z [1, 1, 1]
\]
Question: How to write each of the old vectors \([3, 0, 0], [0, 2, 0], \) and \([0, 0, 1]\) as a linear combination of new vectors \([2, 0, 1], [1, 0, 2], [2, 2, 2], \) and \([0, 1, 0]\)?

Answer:

\[
[3, 0, 0] = 2 [2, 0, 1] - 1 [1, 0, 2] + 0 [2, 2, 2]
\]
\[
[0, 2, 0] = -\frac{2}{3} [2, 0, 1] - \frac{2}{3} [1, 0, 2] + 1 [2, 2, 2]
\]
\[
[0, 0, 1] = -\frac{1}{3} [2, 0, 1] + \frac{2}{3} [1, 0, 2] + 0 [2, 2, 2]
\]
Standard generators

Writing \([x, y, z]\) as a linear combination of the vectors \([3, 0, 0]\), \([0, 2, 0]\), and \([0, 0, 1]\) is simple.

\[
[x, y, z] = \left(\frac{x}{3}\right) [3, 0, 0] + \left(\frac{y}{2}\right) [0, 2, 0] + z [0, 0, 1]
\]

Even simpler if instead we use \([1, 0, 0]\), \([0, 1, 0]\), and \([0, 0, 1]\):

\[
[x, y, z] = x [1, 0, 0] + y [0, 1, 0] + z [0, 0, 1]
\]

These are called *standard generators* for \(\mathbb{R}^3\).
Written \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\)
Standard generators

Question: Can 2×2 *Lights Out* be solved from every starting configuration?

Equivalent to asking whether the 2×2 button vectors

![Button Vectors](image)

are generators for $GF(2)^D$, where $D = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$.

Yes! For proof, we show that each standard generator can be written as a linear combination of the button vectors:

- $\bullet \bullet = 1 \bullet \bullet + 1 \bullet \bullet + 0 \bullet \bullet$
- $\bullet \bullet = 1 \bullet \bullet + 1 \bullet \bullet + 1 \bullet \bullet$
- $\bullet \bullet = 1 \bullet \bullet + 0 \bullet \bullet + 1 \bullet \bullet$
- $\bullet \bullet = 0 \bullet \bullet + 1 \bullet \bullet + 1 \bullet \bullet$
Geometry of sets of vectors: span of vectors over \mathbb{R}

Span of a single nonzero vector \mathbf{v}:

$$\text{Span} \{ \mathbf{v} \} = \{ \alpha \mathbf{v} : \alpha \in \mathbb{R} \}$$

This is the line through the origin and \mathbf{v}. One-dimensional

Span of the empty set: just the origin. Zero-dimensional

Span $\{ [1, 2], [3, 4] \}$: all points in the plane. Two-dimensional

Span of two 3-vectors? Span $\{ [1, 0, 1.65], [0, 1, 1] \}$ is a plane in three dimensions:

Two-dimensional
Is the span of \(k \) vectors always \(k \)-dimensional?

No.

- Span \(\{[0, 0]\} \) is 0-dimensional.
- Span \(\{[1, 3], [2, 6]\} \) is 1-dimensional.
- Span \(\{[1, 0, 0], [0, 1, 0], [1, 1, 0]\} \) is 2-dimensional.

Fundamental Question: How can we predict the dimensionality of the span of some vectors?
Geometry of sets of vectors: span of vectors over \mathbb{R}

Span of two 3-vectors? Span $\{[1, 0, 1.65], [0, 1, 1]\}$ is a plane in three dimensions:

Two-dimensional

Useful for plotting the plane

\[\{\alpha [1, 0.1.65] + \beta [0, 1, 1] : \\
\alpha \in \{-5, -4, \ldots, 3, 4\}, \\
\beta \in \{-5, -4, \ldots, 3, 4\}\}\]
Geometry of sets of vectors: span of vectors over \mathbb{R}

Span of two 3-vectors? Span $\{(1, 0, 1.65), (0, 1, 1)\}$ is a plane in three dimensions:

Two-dimensional

Perhaps a more familiar way to specify a plane:

$$\{(x, y, z) : ax + by + cz = 0\}$$

Using dot-product, we could rewrite as

$$\{[x, y, z] : [a, b, c] \cdot [x, y, z] = 0\}$$

Set of vectors satisfying a linear equation with right-hand side zero.

We can similarly specify a line in three dimensions:

$$\{[x, y, z] : a_1 \cdot [x, y, z] = 0, a_2 \cdot [x, y, z] = 0\}$$

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- Solution set of some system of linear equations with zero right-hand sides
Geometry of sets of vectors: Two representations

Two ways to represent a geometric object (line, plane, etc.) containing the origin:

- Span of some vectors
- Solution set of some system of linear equations with zero right-hand sides

![Graphical representation of geometric objects]

Span \{\[4, -1, 1\], \[0, 1, 1\]\} \quad \{\[x, y, z\] : \[1, 2, -2\] \cdot \[x, y, z\] = 0\}

Span \{\[1, 2, -2\]\} \quad \{\[x, y, z\] :
\[4, -1, 1\] \cdot \[x, y, z\] = 0,
\[0, 1, 1\] \cdot \[x, y, z\] = 0\}
Geometry of sets of vectors: Two representations

Two ways to represent a geometric object (line, plane, etc.) containing the origin:
- Span of some vectors
- Solution set of some system of linear equations with zero right-hand sides

Each representation has its uses.

Suppose you want to find the plane containing two given lines

- First line is Span \{[4, −1, 1]\}.
- Second line is Span \{[0, 1, 1]\}.

- The plane containing these two lines is Span \{[4, −1, 1], [0, 1, 1]\}
Geometry of sets of vectors: Two representations

Two ways to represent a geometric object (line, plane, etc.) containing the origin:
 - Span of some vectors
 - Solution set of some system of linear equations with zero right-hand sides

Each representation has its uses.

Suppose you want to find the intersection of two given planes:

- First plane is
 \[
 \{[x, y, z] : [4, -1, 1] \cdot [x, y, z] = 0\}.
 \]

- Second plane is
 \[
 \{[x, y, z] : [0, 1, 1] \cdot [x, y, z] = 0\}.
 \]

- The intersection is
 \[
 \{[x, y, z] :
 [4, -1, 1] \cdot [x, y, z] = 0, [0, 1, 1] \cdot [x, y, z] = 0\}.
 \]
Two representations: What's common?

Subset of \mathbb{F}^D that satisfies three properties:

Property V1 Subset contains the zero vector $\mathbf{0}$

Property V2 If subset contains \mathbf{v} then it contains $\alpha \mathbf{v}$ for every scalar α

Property V3 If subset contains \mathbf{u} and \mathbf{v} then it contains $\mathbf{u} + \mathbf{v}$

$\text{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ satisfies

- Property V1 because
 \[0 \mathbf{v}_1 + \cdots + 0 \mathbf{v}_n \]

- Property V2 because
 \[\text{if } \mathbf{v} = \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n \text{ then } \alpha \mathbf{v} = \alpha \beta_1 \mathbf{v}_1 + \cdots + \alpha \beta_n \mathbf{v}_n \]

- Property V3 because
 \[\text{if } \mathbf{u} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n \]
 \[\text{and } \mathbf{v} = \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n \]
 \[\text{then } \mathbf{u} + \mathbf{v} = (\alpha_1 + \beta_1) \mathbf{v}_1 + \cdots + (\alpha_n + \beta_n) \mathbf{v}_n \]

Solution set $\{ \mathbf{x} : a_1 \mathbf{x} = 0, \ldots, a_m \mathbf{x} = 0 \}$ satisfies

- Property V1 because
 \[a_1 \cdot 0 = 0, \ldots, a_m \cdot 0 = 0 \]

- Property V2 because
 \[\text{if } a_1 \cdot \mathbf{v} = 0, \ldots, a_m \cdot \mathbf{v} = 0 \text{ then } a_1 \cdot (\alpha \mathbf{v}) = \alpha (a_1 \cdot \mathbf{v}) = 0, \ldots, a_m \cdot (\alpha \mathbf{v}) = \alpha (a_m \cdot \mathbf{v}) = 0 \]

- Property V3 because
 \[\text{if } a_1 \cdot \mathbf{u} = 0, \ldots, a_m \cdot \mathbf{u} = 0 \]
 \[\text{and } \mathbf{v} = \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n \]
 \[\text{then } a_1 \cdot (\mathbf{u} + \mathbf{v}) = (a_1 + \beta_1) \mathbf{v}_1 + \cdots + (a_m + \beta_n) \mathbf{v}_n \]

Any subset V of \mathbb{F}^D satisfying the three properties is called a vector space.

Example: $\text{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ and $\{ \mathbf{x} : a_1 \mathbf{x} = 0, \ldots, a_m \mathbf{x} = 0 \}$ are vector spaces.

If U is also a vector space and U is a subset of V then U is called a subspace of V.

Example: $\text{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ and $\{ \mathbf{x} : a_1 \mathbf{x} = 0, \ldots, a_m \mathbf{x} = 0 \}$ are subspaces of \mathbb{R}^D.

Possibly profound fact we will learn later: Every subspace of \mathbb{R}^D can be written in the form $\text{Span} \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ or can be written in the form $\{ \mathbf{x} : a_1 \mathbf{x} = 0, \ldots, a_m \mathbf{x} = 0 \}$.
Abstract vector spaces

In traditional, abstract approach to linear algebra:

- We don’t define vectors as sequences \([1,2,3]\) or even functions \(\{a:1, \ b:2, \ c:3\}\).
- We define a vector space over a field \(\mathbb{F}\) to be any set \(V\) that is equipped with
 - an *addition* operation, and
 - a *scalar-multiplication* operation

satisfying certain axioms (e.g. commutate and distributive laws) and Properties V1, V2, V3.

Abstract approach has the advantage that it avoids committing to specific structure for vectors.

I avoid abstract approach in this class because more concrete notion of vectors is helpful in developing intuition.
Geometric objects that exclude the origin

How to represent a line that does *not* contain the origin?

Start with a line that *does* contain the origin.
We know that points of such a line form a vector space \mathcal{V}.

Translate the line by adding a vector c to every vector in \mathcal{V}:

$$\{c + v : v \in \mathcal{V}\}$$

(abbreviated $c + \mathcal{V}$)

Result is line through c instead of through origin.
Geometric objects that exclude the origin

How to represent a plane that does not contain the origin?

▶

Start with a plane that does contain the origin.

We know that points of such a plane form a vector space \(\mathcal{V} \).

▶

Translate it by adding a vector \(\mathbf{c} \) to every vector in \(\mathcal{V} \)

\[\{ \mathbf{c} + \mathbf{v} : \mathbf{v} \in \mathcal{V} \} \]

(abbreviated \(\mathbf{c} + \mathcal{V} \))

▶ Result is plane containing \(\mathbf{c} \).
Definition: If c is a vector and V is a vector space then $c + V$ is called an *affine space*.

Examples: A plane or a line not necessarily containing the origin.
Example: The plane containing $u_1 = [3, 0, 0]$, $u_2 = [-3, 1, -1]$, and $u_3 = [1, -1, 1]$.

Want to express this plane as $u_1 + V$ where V is the span of two vectors (a plane containing the origin)

Let $V = \text{Span} \{a, b\}$ where

$$a = u_2 - u_1 \text{ and } b = u_3 - u_1$$

Since $u_1 + V$ is a translation of a plane, it is also a plane.

- $\text{Span} \{a, b\}$ contains 0, so $u_1 + \text{Span} \{a, b\}$ contains u_1.
- $\text{Span} \{a, b\}$ contains $u_2 - u_1$ so $u_1 + \text{Span} \{a, b\}$ contains u_2.
- $\text{Span} \{a, b\}$ contains $u_3 - u_1$ so $u_1 + \text{Span} \{a, b\}$ contains u_3.

Thus the plane $u_1 + \text{Span} \{a, b\}$ contains u_1, u_2, u_3.

Only one plane contains those three points, so this is that one.
Affine space and affine combination

Example: The plane containing $\mathbf{u}_1 = [3, 0, 0]$, $\mathbf{u}_2 = [-3, 1, -1]$, and $\mathbf{u}_3 = [1, -1, 1]$:

$$\mathbf{u}_1 + \text{Span} \{ \mathbf{u}_2 - \mathbf{u}_1, \mathbf{u}_3 - \mathbf{u}_1 \}$$

Cleaner way to write it?

$$\mathbf{u}_1 + \text{Span} \{ \mathbf{u}_2 - \mathbf{u}_1, \mathbf{u}_3 - \mathbf{u}_1 \} = \{ \mathbf{u}_1 + \alpha (\mathbf{u}_2 - \mathbf{u}_1) + \beta (\mathbf{u}_3 - \mathbf{u}_1) : \alpha, \beta \in \mathbb{R} \}$$

$$= \{ \mathbf{u}_1 + \alpha \mathbf{u}_2 - \alpha \mathbf{u}_1 + \beta \mathbf{u}_3 - \beta \mathbf{u}_1 : \alpha, \beta \in \mathbb{R} \}$$

$$= \{ (1 - \alpha - \beta) \mathbf{u}_1 + \alpha \mathbf{u}_2 + \beta \mathbf{u}_3 : \alpha, \beta \in \mathbb{R} \}$$

$$= \{ \gamma \mathbf{u}_1 + \alpha \mathbf{u}_2 + \beta \mathbf{u}_3 : \gamma + \alpha + \beta = 1 \}$$

Definition: A linear combination $\gamma \mathbf{u}_1 + \alpha \mathbf{u}_2 + \beta \mathbf{u}_3$ where $\gamma + \alpha + \beta = 1$ is an **affine combination**.
Affine combination

Definition: A linear combination

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_n \mathbf{u}_n$$

where

$$\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$$

is an *affine combination*.

Definition: The set of all affine combinations of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ is called the *affine hull* of those vectors.

$$\text{Affine hull of } \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n = \mathbf{u}_1 + \text{Span } \{ \mathbf{u}_2 - \mathbf{u}_1, \ldots, \mathbf{u}_n - \mathbf{u}_1 \}$$

This shows that the affine hull of some vectors is an affine space.
Geometric objects not containing the origin: equations

Can express a plane as $u_1 + \mathcal{V}$ or affine hull of u_1, u_2, \ldots, u_n.

More familiar way to express a plane:

The solution set of an equation $ax + by + cz = d$

In vector terms,

$$\left\{ [x, y, z] : [a, b, c] \cdot [x, y, z] = d \right\}$$

In general, a geometric object (point, line, plane, ...) can be expressed as the solution set of a system of linear equations.

$$\left\{ x : a_1 \cdot x = \beta_1, \ldots, a_m \cdot x = \beta_m \right\}$$

Conversely, is the solution set an affine space?

Consider solution set of a contradictory system of equations, e.g. $1x = 1, 2x = 1$:

- Solution set is empty....
- ...but a vector space \mathcal{V} always contains the zero vector,
- ...so an affine space $u_1 + \mathcal{V}$ always contains at least one vector.

Turns out this the only exception:

Theorem: The solution set of a linear system is either empty or an affine space.
Affine spaces and linear systems

Theorem: The solution set of a linear system is either empty or an affine space.

Each linear system corresponds to a linear system with zero right-hand sides:

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} &= \beta_1 \\
&\vdots \\
\mathbf{a}_m \cdot \mathbf{x} &= \beta_m \\
\end{align*}
\]

\[\Rightarrow\]

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} &= 0 \\
&\vdots \\
\mathbf{a}_m \cdot \mathbf{x} &= 0 \\
\end{align*}
\]

Definition:
A linear equation \(\mathbf{a} \cdot \mathbf{x} = 0 \) with zero right-hand side is a *homogeneous* linear equation. A system of homogeneous linear equations is called a *homogeneous* linear system.

We already know: The solution set of a homogeneous linear system is a vector space.

Lemma: Let \(\mathbf{u}_1 \) be a solution to a linear system. Then, for any other vector \(\mathbf{u}_2 \), \(\mathbf{u}_2 \) is also a solution if and only if \(\mathbf{u}_2 - \mathbf{u}_1 \) is a solution to the corresponding homogeneous linear system.
Affine spaces and linear systems

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} &= \beta_1 \\
\vdots \\
\mathbf{a}_m \cdot \mathbf{x} &= \beta_m
\end{align*}
\quad \Rightarrow \quad \\
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} &= 0 \\
\vdots \\
\mathbf{a}_m \cdot \mathbf{x} &= 0
\end{align*}
\]

Lemma: Let \(\mathbf{u}_1 \) be a solution to a linear system. Then, for any other vector \(\mathbf{u}_2 \), \(\mathbf{u}_2 \) is also a solution if and only if \(\mathbf{u}_2 - \mathbf{u}_1 \) is a solution to the corresponding homogeneous linear system.

Proof: We assume \(\mathbf{a}_1 \cdot \mathbf{u}_1 = \beta_1, \ldots, \mathbf{a}_m \cdot \mathbf{u}_1 = \beta_m \), so

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{u}_2 &= \beta_1 \\
\vdots \\
\mathbf{a}_m \cdot \mathbf{u}_2 &= \beta_m
\end{align*}
\quad \text{iff} \quad \\
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{u}_2 - \mathbf{a}_1 \cdot \mathbf{u}_1 &= 0 \\
\vdots \\
\mathbf{a}_m \cdot \mathbf{u}_2 - \mathbf{a}_m \cdot \mathbf{u}_1 &= 0
\end{align*}
\quad \text{iff} \quad \\
\begin{align*}
\mathbf{a}_1 \cdot (\mathbf{u}_2 - \mathbf{u}_1) &= 0 \\
\vdots \\
\mathbf{a}_m \cdot (\mathbf{u}_2 - \mathbf{u}_1) &= 0
\end{align*}
\]

\[QED\]
Lemma: Let u_1 be a solution to a linear system. Then, for any other vector u_2, u_2 is also a solution if and only if $u_2 - u_1$ is a solution to the corresponding homogeneous linear system.

We use this lemma to prove the theorem:

Theorem: The solution set of a linear system is either empty or an affine space.

- Let $\mathcal{V} =$ set of solutions to corresponding homogeneous linear system.
- If the linear system has no solution, its solution set is empty.
- If it does has a solution u_1 then

\[
\{\text{solutions to linear system}\} = \{u_2 : u_2 - u_1 \in \mathcal{V}\}
\]

(substitute $v = u_2 - u_1$)

\[
= \{u_1 + v : v \in \mathcal{V}\}
\]

QED
Number of solutions to a linear system

We just proved:

If \(\mathbf{u}_1 \) is a solution to a linear system then

\[
\{ \text{solutions to linear system} \} = \{ \mathbf{u}_1 + \mathbf{v} : \mathbf{v} \in \mathcal{V} \}
\]

where \(\mathcal{V} = \{ \text{solutions to corresponding homogeneous linear system} \} \)

Implications:

Long ago we asked: How can we tell if a linear system has only one solution?

Now we know: If a linear system has a solution \(\mathbf{u}_1 \) then that solution is unique if the only solution to the corresponding homogeneous linear system is \(\mathbf{0} \).

Long ago we asked: How can we find the number of solutions to a linear system over \(GF(2) \)?

Now we know: Number of solutions either is zero or is equal to the number of solutions to the corresponding *homogeneous* linear system.
A **checksum function** maps long files to short sequences.

Idea:
- Web page shows the checksum of each file to be downloaded.
- Download the file and run the checksum function on it.
- If result does not match checksum on web page, you know the file has been corrupted.
- If random corruption occurs, how likely are you to detect it?

Impractical but instructive checksum function:
- **input:** an \(n \)-vector \(\mathbf{x} \) over \(GF(2) \)
- **output:** \([a_1 \cdot \mathbf{x}, a_2 \cdot \mathbf{x}, \ldots, a_{64} \cdot \mathbf{x}]\)

where \(a_1, a_2, \ldots, a_{64} \) are sixty-four \(n \)-vectors.
Number of solutions: checksum function

Our checksum function:

- **input**: an \(n \)-vector \(\mathbf{x} \) over \(GF(2) \)
- **output**: \([a_1 \cdot \mathbf{x}, a_2 \cdot \mathbf{x}, \ldots, a_{64} \cdot \mathbf{x}]\)

where \(a_1, a_2, \ldots, a_{64} \) are sixty-four \(n \)-vectors.

Suppose \(p \) is the original file, and it is randomly corrupted during download.

What is the probability that the corruption is undetected?

The checksum of the original file is \([\beta_1, \ldots, \beta_{64}] = [a_1 \cdot \mathbf{p}, \ldots, a_{64} \cdot \mathbf{p}]\).

Suppose corrupted version is \(p + e \).

Then checksum of corrupted file matches checkum of original if and only if

\[
\begin{align*}
 a_1 \cdot (p + e) &= \beta_1 & \quad & a_1 \cdot p - a_1 \cdot (p + e) &= 0 & \quad & a_1 \cdot e &= 0 \\
 \vdots & & \text{iff} & \vdots & & \text{iff} & \vdots \\
 a_{64} \cdot (p + e) &= \beta_{64} & \quad & a_{64} \cdot p - a_{64} \cdot (p + e) &= 0 & \quad & a_{64} \cdot e &= 0
\end{align*}
\]

iff \(e \) is a solution to the homogeneous linear system \(a_1 \cdot \mathbf{x} = 0, \ldots, a_{64} \cdot \mathbf{x} = 0 \).
Number of solutions: checksum function

Suppose corrupted version is $p + e$.
Then checksum of corrupted file matches checksum of original if and only if e is a solution to homogeneous linear system

\[
\begin{align*}
a_1 \cdot x &= 0 \\
&\vdots \\
a_{64} \cdot x &= 0
\end{align*}
\]

If e is chosen according to the uniform distribution,

\[
\text{Probability} \left(p + e \text{ has same checksum as } p \right) = \frac{\text{Probability} \left(e \text{ is a solution to homogeneous linear system} \right)}{\text{number of } n\text{-vectors}} = \frac{\text{number of solutions to homogeneous linear system}}{2^n}
\]

Question:
How to find out number of solutions to a homogeneous linear system over $GF(2)$?
Geometry of sets of vectors: convex hull

Earlier, we saw: The \(\mathbf{u} \)-to-\(\mathbf{v} \) line segment is

\[
\{ \alpha \mathbf{u} + \beta \mathbf{v} : \alpha \in \mathbb{R}, \beta \in \mathbb{R}, \alpha \geq 0, \beta \geq 0, \alpha + \beta = 1 \}\]

Definition: For vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) over \(\mathbb{R} \), a linear combination

\[
\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n
\]

is a *convex combination* if the coefficients are all nonnegative and they sum to 1.

- Convex hull of a single vector is a point.
- Convex hull of two vectors is a line segment.
- Convex hull of three vectors is a triangle

Convex hull of more vectors? Could be higher-dimensional... but not necessarily.

For example, a convex polygon is the convex hull of its vertices