The Basis
René Descartes

Born 1596.
After studying law in college,. . . .

I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of which could be found in myself or else in the great book of the world, I spent the rest of my youth traveling, visiting courts and armies, mixing with people of diverse temperaments and ranks, gathering various experiences, testing myself in the situations which fortune offered me, and at all times reflecting upon whatever came my way so as to derive some profit from it.

He had a practice of lying in bed in the morning, thinking about mathematics....
In 1618, he had an idea... while lying in bed and watching a fly on the ceiling.

He could describe the location of the fly in terms of two numbers: its distance from the two walls.

He realized that this works even if the two walls were not perpendicular.

He realized that you could express geometry in algebra.

- The walls play role of what we now call *axes*.
- The two numbers are what we now call *coordinates*
Coordinate systems

In terms of vectors (and generalized beyond two dimensions),

- *coordinate system* for a vector space \mathcal{V} is specified by generators a_1, \ldots, a_n of \mathcal{V}
- Every vector v in \mathcal{V} can be written as a linear combination

$$ v = \alpha_1 a_1 + \cdots + \alpha_n a_n $$

- We represent vector v by the vector $[\alpha_1, \ldots, \alpha_n]$ of coefficients.
 called the *coordinate representation* of v in terms of a_1, \ldots, a_n.

But assigning coordinates to points is not enough. In order to avoid confusion, we must ensure that each point is assigned coordinates in exactly one way. How?

We will discuss unique representation later.
Coordinate representation

Definition: The *coordinate representation* of \(\mathbf{v} \) in terms of \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) is the vector \([\alpha_1, \ldots, \alpha_n] \) such that

\[
\mathbf{v} = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_n \mathbf{a}_n
\]

In this context, the coefficients are called the *coordinates*.

Example: The vector \(\mathbf{v} = [1, 3, 5, 3] \) is equal to

\[
1 [1, 1, 0, 0] + 2 [0, 1, 1, 0] + 3 [0, 0, 1, 1]
\]

so the coordinate representation of \(\mathbf{v} \) in terms of the vectors \([1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1] \) is \([1, 2, 3] \).

Example: What is the coordinate representation of the vector \([6, 3, 2, 5] \) in terms of the vectors \([2, 2, 2, 3], [1, 0, -1, 0], [0, 1, 0, 1] \)?

Since

\[
[6, 3, 2, 5] = 2 [2, 2, 2, 3] + 2 [1, 0, -1, 0] - 1 [0, 1, 0, 1],
\]

the coordinate representation is \([2, 2, -1] \).
Coordinate representation

Definition: The *coordinate representation* of \(\mathbf{v} \) in terms of \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) is the vector \([\alpha_1, \ldots, \alpha_n]\) such that

\[
\mathbf{v} = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_n \mathbf{a}_n
\]

In this context, the coefficients are called the *coordinates*.

Now we do an example with vectors over \(GF(2) \).

Example: What is the coordinate representation of the vector \([0,0,0,1]\) in terms of the vectors \([1,1,0,1]\), \([0,1,0,1]\), and \([1,1,0,0]\)?

Since

\[
[0, 0, 0, 1] = 1 [1, 1, 0, 1] + 0 [0, 1, 0, 1] + 1 [1, 1, 0, 0]
\]

the coordinate representation of \([0, 0, 0, 1]\) is \([1, 0, 1]\).
Coordinate representation

Definition: The *coordinate representation* of \(\mathbf{v} \) in terms of \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) is the vector \([\alpha_1, \ldots, \alpha_n]\) such that

\[
\mathbf{v} = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_n \mathbf{a}_n
\]

In this context, the coefficients are called the *coordinates*.

Why put the coordinates in a vector?

Makes sense in view of linear-combinations definitions of matrix-vector multiplication.

Let \(A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \).

- “\(\mathbf{u} \) is the coordinate representation of \(\mathbf{v} \) in terms of \(\mathbf{a}_1, \ldots, \mathbf{a}_n \)” can be written as matrix-vector equation \(A\mathbf{u} = \mathbf{v} \)
- To go from a coordinate representation \(\mathbf{u} \) to the vector being represented, we multiply \(A \) times \(\mathbf{u} \).
- To go from a vector \(\mathbf{v} \) to its coordinate representation, we can solve the matrix-vector equation \(A\mathbf{x} = \mathbf{v} \).
 (Because the columns of \(A \) are generators for \(\mathcal{V} \) and \(\mathbf{v} \) belongs to \(\mathcal{V} \), the equation must have at least one solution.)
Linear Combinations: Lossy compression

Say you need to store or transmit many 2-megapixel images:

How do we represent the image compactly?

- **Obvious method:** 2 million pixels \(\rightarrow\) 2 million numbers

- **Strategy 1:** Use sparsity! Find the “nearest” \(k\)-sparse vector. Later we’ll see this consists of suppressing all but the largest \(k\) entries.

- **More sophisticated strategy?**
Linear Combinations: Lossy compression

Strategy 2: Represent image vector by its coordinate representation:

- Before compressing any images, select vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- Replace each image vector with its coordinate representation in terms of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

For this strategy to work, we need to ensure that *every* image vector can be represented as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Given some D-vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ over \mathbb{F}, how can we tell whether *every* vector in \mathbb{F}^D can be written as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$?

We also need the number of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to be much smaller than the number of pixels.

Given D, what is minimum number of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ such that every vector in \mathbb{F}^D can be written as a linear combination?
Linear Combinations: Lossy compression

Strategy 3: A hybrid approach

Step 1: Select vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Step 2: For each image to compress, find its coordinate representation \mathbf{u} in terms of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Step 3: Replace \mathbf{u} with the closest k-sparse vector $\mathbf{\tilde{u}}$, and store $\mathbf{\tilde{u}}$.

Step 4: To recover an image from $\mathbf{\tilde{u}}$, calculate the corresponding linear combination of $\mathbf{v}_1, \ldots \mathbf{v}_n$.
Greedy algorithms for finding a set of generators

Question: For a given vector space \(\mathcal{V} \), what is the minimum number of vectors whose span equals \(\mathcal{V} \)?

How can we obtain a minimum number of vectors?

Two natural approaches come to mind, the *Grow* algorithm and the *Shrink* algorithm.
Grow algorithm

def $\text{Grow}(\mathcal{V})$
 $S = \emptyset$
 repeat while possible:
 find a vector \mathbf{v} in \mathcal{V} that is not in $\text{Span } S$, and put it in S.

The algorithm stops when there is no vector to add, at which time S spans all of \mathcal{V}. Thus, if the algorithm stops, it will have found a generating set.

But is it bigger than necessary?
Shrink Algorithm

```python
def SHRINK(V):
    S = some finite set of vectors that spans V
    repeat while possible:
        find a vector \( \mathbf{v} \) in \( S \) such that \( \text{Span} \left( S \setminus \{ \mathbf{v} \} \right) = V \), and remove \( \mathbf{v} \) from \( S \).
```

The algorithm stops when there is no vector whose removal would leave a spanning set. At every point during the algorithm, \(S \) spans \(V \), so it spans \(V \) at the end. Thus, if the algorithm stops, the algorithm will have found a generating set.

The question is, again: is it bigger than necessary?
Is it obvious that Grow algorithm and Shrink algorithm find smallest sets of generators? Look at example for a problem in graphs...

Points are called nodes, links are called edges. Each edge has two endpoints, the nodes it connects. The endpoints of an edge are neighbors.

Definition: A dominating set in a graph is a set S of nodes such that every node is in S or a neighbor of a node in S.
When greed fails: dominating set

Definition: A *dominating set* in a graph is a set S of nodes such that every node is in S or a neighbor of a node in S.

Grow Algorithm:
initialize $S = {}$
while S is not a dominating set,
 add a node to S that is not currently adjacent to S

Shrink Algorithm:
initialize $S = $ all nodes
while there is a node x such that $S - \{x\}$ is a dominating set,
 remove x from S

Neither algorithm is guaranteed to find the smallest solution.
Definition: A sequence of edges $[[x_1, x_2], [x_2, x_3], [x_3, x_4], \ldots, [x_{k-1}, x_{k}]]$ with no repeats is called an x_1-to-x_k path.

Example “Main Quad”-to-”Gregorian Quad” paths in above graph:

- one goes through “Wriston Quad”,
- one goes through “Keeney Quad”

Definition: A x-to-x path is called a cycle.
Definition: A sequence of edges \([\{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \ldots, \{x_{k-1}, x_k\}]\) with no repeats is called an \(x_1\)-to-\(x_k\) path.

Example “Main Quad”-to-”Gregorian Quad” paths in above graph:
- one goes through “Wriston Quad”,
- one goes through “Keeney Quad”

Definition: A \(x\)-to-\(x\) path is called a cycle.
Definition: A set S of edges is *spanning* for a graph G if, for every edge $\{x, y\}$ of G, there is an x-to-y path consisting of edges of S.

Soon we see connection between this use of “spanning” and its use with vectors.
Definition: A set of edges of G is a forest if the set includes no cycles.
Minimum spanning forest: forest

Definition: A set of edges of \(G \) is a *forest* if the set includes no cycles.
Definition: A set of edges of G is a forest if the set includes no cycles.
Minimum spanning forest problem:

- **input**: a graph G, and an assignment of real-number weights to the edges of G.
- **output**: a minimum-weight set S of edges that is spanning and a forest.

Application: Design hot-water delivery network for the university campus:

- Network must achieve same connectivity as input graph.
- An edge represents a possible pipe.
- Weight of edge is cost of installing the pipe.
- Goal: minimize total cost.
Minimum spanning forest: Grow algorithm

```python
def Grow(G)
    S := ∅
    consider the edges in increasing order
    for each edge e:
        if e’s endpoints are not yet connected
            add e to S.
```

Increasing order: 2, 3, 4, 5, 6, 7, 8, 9.
Minimum spanning forest: Shrink algorithm

```python
def SHRINK(G):
    S = {all edges}
    consider the edges in order, from highest-weight to lowest-weight
    for each edge e:
        if every pair of nodes are connected via S − {e}:
            remove e from S.
```

Decreasing order: 9, 8, 7, 6, 5, 4, 3, 2.
Formulating *Minimum Spanning Forest* in linear algebra

Let $D =$ set of nodes \{Pembroke, Athletic, Main, Keeney, Wriston\}

Represent a subset of D by a $\text{GF}(2)$ vector:

subset \{Pembroke, Main, Gregorian\} is represented by

<table>
<thead>
<tr>
<th>Pembroke</th>
<th>Athletic</th>
<th>Bio-Med</th>
<th>Main</th>
<th>Keeney</th>
<th>Wriston</th>
<th>Gregorian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Formulating *Minimum Spanning Forest* in linear algebra

```
edge                   vector
| Pembroke, Athletic   | 1 1
| Pembroke, Bio-Med    | 1 1
| Athletic, Bio-Med    | 1 1
| Main, Keeney         | 1 1
| Main, Wriston        | 1 1
| Keeney, Wriston      | 1 1
| Keeney, Gregorian    | 1 1
| Wriston, Gregorian   | 1 1
```

Diagram illustrating the connections:
- Pembroke Campus
- Athletic Complex
- Main Quad
- Keeney Quad
- Wriston Quad
- Gregorian Quad

The table above represents the adjacency matrix for the Minimum Spanning Forest, where each row and column corresponds to a location, and the value at each cell indicates the connection strength between the locations.
The vector representing \{Keeney, Gregorian\},

\[
\begin{array}{cccccccc}
\text{Pembroke} & \text{Athletic} & \text{Bio-Med} & \text{Main} & \text{Keeney} & \text{Wriston} & \text{Gregorian} \\
\hline
1 & 1 & 1 & 1
\end{array}
\]

is the sum, for example, of the vectors representing \{Keeney, Main\}, \{Main, Wriston\}, and \{Wriston, Gregorian\}:

\[
\begin{array}{cccccccc}
\text{Pembroke} & \text{Athletic} & \text{Bio-Med} & \text{Main} & \text{Keeney} & \text{Wriston} & \text{Gregorian} \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

A vector with 1’s in entries \(x\) and \(y\) is the sum of vectors corresponding to edges that form an \(x\)-to-\(y\) path in the graph.
A vector with 1’s in entries x and y is the sum of vectors corresponding to edges that form an x-to-y path in the graph.

Example: The span of the vectors representing

\{Pembroke, Bio-Med\}, \{Main, Wriston\}, \{Keeney, Wriston\}, \{Wriston, Gregorian\}

contains the vectors corresponding to

\{Main, Keeney\}, \{Keeney, Gregorian\}, and \{Main, Gregorian\}

but not the vectors corresponding to

\{Athletic, Bio-Med\} or \{Bio-Med, Main\}.

- Formulating *Minimum Spanning Forest* in linear algebra
- Pembroke Campus
- Athletic Complex
- Main Quad
- Keeney Quad
- Wriston Quad
- Bio-Med
- Gregorian Quad
Grow algorithms

```python
def Grow(G):
    S := ∅
    consider the edges in increasing order
    for each edge e:
        if e's endpoints are not yet connected
            add e to S.
```

```python
def Grow(𝑉)
    S := ∅
    repeat while possible:
        find a vector v in 𝑉 not in Span S,
        and put it in S.
```

- Considering edges e of G corresponds to considering vectors v in 𝑉
- Testing if e’s endpoints are not connected corresponds to testing if v is not in Span S.

The Grow algorithm for MSF is a specialization of the Grow algorithm for vectors.

Same for the Shrink algorithms.
Linear Dependence: The Superfluous-Vector Lemma

Grow and Shrink algorithms both test whether a vector is superfluous in spanning a vector space V. Need a criterion for superfluity.

Superfluous-Vector Lemma: For any set S and any vector $v \in S$, if v can be written as a linear combination of the other vectors in S then $\text{Span } (S - \{v\}) = \text{Span } S$

Proof: Let $S = \{v_1, \ldots, v_n\}$. Suppose $v_n = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_{n-1} v_{n-1}$

To show: every vector in $\text{Span } S$ is also in $\text{Span } (S - \{v_n\})$.

Every vector v in $\text{Span } S$ can be written as $v = \beta_1 v_1 + \beta_2 v_2 + \cdots \beta_n v_n$

Substituting for v_n, we obtain

$$v = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_n \left(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_{n-1} v_{n-1} \right)$$

$$= (\beta_1 + \beta_n \alpha_1) v_1 + (\beta_2 + \beta_n \alpha_2) v_2 + \cdots + (\beta_{n-1} + \beta_n \alpha_{n-1}) v_{n-1}$$

which shows that an arbitrary vector in $\text{Span } S$ can be written as a linear combination of vectors in $S - \{v_n\}$ and is therefore in $\text{Span } (S - \{v_n\})$.

QED
Defining linear dependence

Definition: Vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are *linearly dependent* if the zero vector can be written as a *nontrivial* linear combination of the vectors:

\[
0 = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n
\]

In this case, we refer to the linear combination as a *linear dependency* in \(\mathbf{v}_1, \ldots, \mathbf{v}_n \).

On the other hand, if the *only* linear combination that equals the zero vector is the trivial linear combination, we say \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are linearly *independent*.

Example: The vectors \([1, 0, 0], [0, 2, 0], \) and \([2, 4, 0]\) are linearly dependent, as shown by the following equation:

\[
2 [1, 0, 0] + 2 [0, 2, 0] − 1 [2, 4, 0] = [0, 0, 0]
\]

Therefore:

\[
2 [1, 0, 0] + 2 [0, 2, 0] − 1 [2, 4, 0]
\] is a linear dependency in \([1, 0, 0], [0, 2, 0], [2, 4, 0]\).
Example: The vectors $[1, 0, 0]$, $[0, 2, 0]$, and $[0, 0, 4]$ are linearly independent.

How do we know? Easy since each vector has a nonzero entry where the others have zeroes.

Consider any linear combination

$$
\alpha_1 [1, 0, 0] + \alpha_2 [0, 2, 0] + \alpha_3 [0, 0, 4]
$$

This equals $[\alpha_1, 2\alpha_2, 4\alpha_3]$

If this is the zero vector, it must be that $\alpha_1 = \alpha_2 = \alpha_3 = 0$

That is, the linear combination is trivial.

We have shown the only linear combination that equals the zero vector is the trivial linear combination.
Linear dependence in relation to other questions

How can we tell if vectors v_1, \ldots, v_n are linearly dependent?

Definition: Vectors v_1, \ldots, v_n are *linearly dependent* if the zero vector can be written as a nontrivial linear combination $0 = \alpha_1 v_1 + \cdots + \alpha_n v_n$

By linear-combinations definition, v_1, \ldots, v_n are linearly dependent iff there is a nonzero vector

$$\begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix}
$$

such that

$$\begin{bmatrix}
v_1 & \cdots & v_n
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix} = 0$$

Therefore, v_1, \ldots, v_n are linearly dependent iff the null space of the matrix is nontrivial.

This shows that the question

How can we tell if vectors v_1, \ldots, v_n are linearly dependent?

is the same as a question we asked earlier:

How can we tell if the null space of a matrix is trivial?
Linear dependence in relation to other questions

The question

How can we tell if vectors v_1, \ldots, v_n are linearly dependent?

is the same as a question we asked earlier:

How can we tell if the null space of a matrix is trivial?

Recall: solution set of a homogeneous linear system

$$a_1 \cdot x = 0$$

$$\vdots$$

$$a_m \cdot x = 0$$

is the null space of matrix

$$\begin{bmatrix}
 a_1 \\
 \vdots \\
 a_m
\end{bmatrix}.$$

So question is same as:

How can we tell if the solution set of a homogeneous linear system is trivial?
Linear dependence in relation to other questions

The question

How can we tell if vectors v_1, \ldots, v_n are linearly dependent?

is the same as a question we asked earlier:

How can we tell if the null space of a matrix is trivial?

is the same as:

How can we tell if the solution set of a homogeneous linear system is trivial?

Recall:

If u_1 is a solution to a linear system $a_1 \cdot x = \beta_1, \ldots, a_m \cdot x = \beta_m$ then

$\{\text{solutions to linear system}\} = \{u_1 + v : v \in V\}$

where $V = \{\text{solutions to corresponding homogeneous linear system} \quad a_1 \cdot x = 0, \ldots, a_m \cdot x = 0\}$

Thus the question is the same as:

How can we tell if a solution u_1 to a linear system is the \textit{only} solution?
The question

How can we tell if vectors v_1, \ldots, v_n are linearly dependent?

is the same as:

How can we tell if the null space of a matrix is trivial?

is the same as:

How can we tell if the solution set of a homogeneous linear system is trivial?

is the same as:

How can we tell if a solution u_1 to a linear system is the only solution?
Linear dependence

Answering these questions requires an algorithm.

Computational Problem: Testing linear dependence
- **input:** a list \([v_1, \ldots, v_n]\) of vectors
- **output:** DEPENDENTENT if the vectors are linearly dependent, and INDEPENDENT otherwise.

We’ll see two algorithms later.
Linear dependence in *Minimum Spanning Forest*

We can get the zero vector by adding together vectors corresponding to edges that form a cycle: in such a sum, for each entry x, there are exactly two vectors having 1’s in position x.

Example: the vectors corresponding to

\{Main, Wriston\}, \{Main, Keeney\}, \{Keeney, Wriston\},

are as follows:

<table>
<thead>
<tr>
<th>Pembroke</th>
<th>Athletic</th>
<th>Bio-Med</th>
<th>Main</th>
<th>Keeney</th>
<th>Wriston</th>
<th>Gregorian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The sum of these vectors is the zero vector.
Linear dependence in *Minimum Spanning Forest*

Sum of vectors corresponding to edges forming a cycle can make a zero vector. Therefore if a subset of S form a cycle then S is linearly dependent.

Example: The vectors corresponding to

\{Main, Keeney\}, \{Main, Wriston\}, \{Keeney, Wriston\}, \{Wriston, Gregorian\} are linearly dependent because these edges include a cycle.

The zero vector is equal to the nontrivial linear combination

<table>
<thead>
<tr>
<th>Pembroke</th>
<th>Athletic</th>
<th>Bio-Med</th>
<th>Main</th>
<th>Keeney</th>
<th>Wriston</th>
<th>Gregorian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>*</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>*</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+0</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
If a subset of S form a cycle then S is linearly dependent.

On the other hand, if a set of edges contains no cycle (i.e. is a forest) then the corresponding set of vectors is linearly independent.
Which edges are spanned?
Which sets are linearly dependent?
Superfluous-Vector Lemma: For any set S and any vector $v \in S$, if v can be written as a linear combination of the other vectors in S then $\text{Span } (S - \{v\}) = \text{Span } S$

Definition: Vectors v_1, \ldots, v_n are \textit{linearly dependent} if the zero vector can be written as a \textbf{nontrivial} linear combination of the vectors:

$$0 = \alpha_1 v_1 + \cdots + \alpha_n v_n$$

In this case, we refer to the linear combination as a \textit{linear dependency} in v_1, \ldots, v_n. On the other hand, if the \textit{only} linear combination that equals the zero vector is the trivial linear combination, we say v_1, \ldots, v_n are linearly \textit{independent}.
Properties of linear independence: hereditary

Lemma: If a finite set S of vectors is linearly dependent and S is a subset of T then T is linearly dependent.

In graphs, if a set S of edges includes a cycle then a superset of S also includes a cycle.
Lemma: If a finite set S of vectors is linearly dependent and S is a subset of T then T is linearly dependent.

Proof: If the zero vector can be written as a nontrivial linear combination of some vectors, it can be so written even if we allow some extra vectors to be in the linear combination because we can use zero coefficients on the extra vectors.

More formal proof: Write $S = \{s_1, \ldots, s_n\}$ and $T = \{s_1, \ldots, s_n, t_1, \ldots, t_k\}$. Suppose S is linearly dependent. Then there are coefficients $\alpha_1, \ldots, \alpha_n$, not all zero, such that

$$0 = \alpha_1 s_1 + \cdots + \alpha_n s_n$$

Therefore

$$0 = \alpha_1 s_1 + \cdots + \alpha_n s_n + 0 t_1 + \cdots 0 t_k$$

which shows that the zero vector can be written as a nontrivial linear combination of the vectors of T, i.e. that T is linearly dependent.

QED
Properties of linear (in)dependence

Linear-Dependence Lemma Let v_1, \ldots, v_n be vectors.

A vector v_i is in the span of the other vectors if and only if the zero vector can be written as a linear combination of v_1, \ldots, v_n in which the coefficient of v_i is nonzero.

In graphs, the Linear-Dependence Lemma states that an edge e is in the span of other edges if there is a cycle consisting of e and a subset of the other edges.
Properties of linear (in)dependence

Linear-Dependence Lemma Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors.

A vector \mathbf{v}_i is in the span of the other vectors if and only if

the zero vector can be written as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$

in which the coefficient of \mathbf{v}_i is nonzero.

Proof: First direction: Suppose \mathbf{v}_i is in the span of the other vectors. That is, there exist coefficients $\alpha_1, \ldots, \alpha_{n-1}$ such that

$$\mathbf{v}_i = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_{i-1} \mathbf{v}_{i-1} + \alpha_{i+1} \mathbf{v}_{i+1} + \cdots + \alpha_n \mathbf{v}_n$$

Moving \mathbf{v}_i to the other side, we can write

$$0 = \alpha_1 \mathbf{v}_1 + \cdots + (\alpha_{i-1}) \mathbf{v}_{i-1} + (\alpha_{i+1}) \mathbf{v}_{i+1} + \cdots + \alpha_n \mathbf{v}_n$$

which shows that the all-zero vector can be written as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in which the coefficient of \mathbf{v}_i is nonzero.
Properties of linear (in)dependence

Linear-Dependence Lemma Let \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) be vectors.

A vector \(\mathbf{v}_i \) is in the span of the other vectors if and only if

the zero vector can be written as a linear combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_n \)

in which the coefficient of \(\mathbf{v}_i \) is nonzero.

Proof: *Now for the other direction.* Suppose there are coefficients \(\alpha_1, \ldots, \alpha_n \) such that

\[
0 = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_i \mathbf{v}_i + \cdots + \alpha_n \mathbf{v}_n
\]

and such that \(\alpha_i \neq 0 \).

Dividing both sides by \(\alpha_i \) yields

\[
0 = \frac{\alpha_1}{\alpha_i} \mathbf{v}_1 + \frac{\alpha_2}{\alpha_i} \mathbf{v}_2 + \cdots + \mathbf{v}_i + \cdots + \frac{\alpha_n}{\alpha_i} \mathbf{v}_n
\]

Moving every term from right to left except \(\mathbf{v}_i \) yields

\[
-(\alpha_1/\alpha_i) \mathbf{v}_1 - (\alpha_2/\alpha_i) \mathbf{v}_2 - \cdots - (\alpha_n/\alpha_i) \mathbf{v}_n = \mathbf{v}_i
\]

QED
Properties of linear (in)dependence

Linear-Dependence Lemma Let v_1, \ldots, v_n be vectors. A vector v_i is in the span of the other vectors if and only if the zero vector can be written as a linear combination of v_1, \ldots, v_n in which the coefficient of v_i is nonzero.

Contrapositive:

v_i is *not* in the space of the other vectors if and only if for any linear combination equaling the zero vector

$$0 = \alpha_1 v_1 + \cdots + \alpha_i v_i + \cdots + \alpha_n v_n$$

it must be that the coefficient α_i is zero.
Analyzing the Grow algorithm

def Grow(V)
 S = ∅
 repeat while possible:
 find a vector v in V that is not in Span S, and put it in S.

Grow-Algorithm Corollary: The vectors obtained by the Grow algorithm are linearly independent.

In graphs, this means that the solution obtained by the Grow algorithm has no cycles (is a forest).
Analyzing the Grow algorithm

Grow-Algorithm Corollary: The vectors obtained by the Grow algorithm are linearly independent.

Proof: For \(n = 1, 2, \ldots \), let \(\mathbf{v}_n \) be the vector added to \(S \) in the \(n^{th} \) iteration of the Grow algorithm. We show by induction that \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) are linearly independent.

For \(n = 0 \), there are no vectors, so the claim is trivially true. Assume the claim is true for \(n = k - 1 \). We prove it for \(n = k \).

The vector \(\mathbf{v}_k \) added to \(S \) in the \(k^{th} \) iteration is not in the span of \(\mathbf{v}_1, \ldots, \mathbf{v}_{k-1} \).

Therefore, by the Linear-Dependence Lemma, for any coefficients \(\alpha_1, \ldots, \alpha_k \) such that

\[
0 = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_{k-1} \mathbf{v}_{k-1} + \alpha_k \mathbf{v}_k
\]

it must be that \(\alpha_k \) equals zero. We may therefore write

\[
0 = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_{k-1} \mathbf{v}_{k-1}
\]

By claim for \(n = k - 1 \), \(\mathbf{v}_1, \ldots, \mathbf{v}_{k-1} \) are linearly independent, so \(\alpha_1 = \cdots = \alpha_{k-1} = 0 \).

The linear combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) is trivial. We have proved that \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) are linearly independent. This proves the claim for \(n = k \).

QED
Analyzing the Shrink algorithm

```python
def Shrink(V):
    S = some finite set of vectors that spans V
    repeat while possible:
        find a vector \( v \) in \( S \) such that Span \( (S - \{v\}) = V \), and remove \( v \) from \( S \).
```

Shrink-Algorithm Corollary: The vectors obtained by the Shrink algorithm are linearly independent.

In graphs, this means that the Shrink algorithm outputs a solution that is a forest.

Recall:

Superfluous-Vector Lemma For any set \(S \) and any vector \(v \in S \), if \(v \) can be written as a linear combination of the other vectors in \(S \) then \(\text{Span} \ (S - \{v\}) = \text{Span} \ S \)
Analyzing the Shrink algorithm

Shrink-Algorithm Corollary: The vectors obtained by the Shrink algorithm are linearly independent.

Proof: Let \(S = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \) be the set of vectors obtained by the Shrink algorithm. Assume for a contradiction that the vectors are linearly dependent.

Then \(\mathbf{0} \) can be written as a nontrivial linear combination

\[
\mathbf{0} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n
\]

where at least one of the coefficients is nonzero.

Let \(\alpha_i \) be one of the nonzero coefficients.

By the Linear-Dependence Lemma, \(\mathbf{v}_i \) can be written as a linear combination of the other vectors.

Hence by the Superfluous-Vector Lemma, \(\operatorname{Span} (S - \{\mathbf{v}_i\}) = \operatorname{Span} S \), so the Shrink algorithm should have removed \(\mathbf{v}_i \).

QED
If they successfully finish, the Grow algorithm and the Shrink algorithm each find a set of vectors spanning the vector space \mathcal{V}. In each case, the set of vectors found is linearly independent.

Definition: Let \mathcal{V} be a vector space. A *basis* for \mathcal{V} is a linearly independent set of generators for \mathcal{V}.

Thus a set S of vectors of \mathcal{V} is a *basis* for \mathcal{V} if S satisfies two properties:

Property B1 (*Spanning*) $\text{Span } S = \mathcal{V}$, and
Property B2 (*Independent*) S is linearly independent.

Most important definition in linear algebra.
Basis: Examples

A set S of vectors of \mathcal{V} is a basis for \mathcal{V} if S satisfies two properties:

Property B1 (Spanning) $\text{Span } S = \mathcal{V}$, and

Property B2 (Independent) S is linearly independent.

Example: Let $\mathcal{V} = \text{Span} \{[1, 0, 2, 0], [0, -1, 0, -2], [2, 2, 4, 4]\}$.

Is $\{[1, 0, 2, 0], [0, -1, 0, -2], [2, 2, 4, 4]\}$ a basis for \mathcal{V}?

The set is spanning but is not independent

$$1 [1, 0, 2, 0] - 1 [0, -1, 0, -2] - \frac{1}{2} [2, 2, 4, 4] = 0$$

so not a basis

However, $\{[1, 0, 2, 0], [0, -1, 0, -2]\}$ is a basis:

- Obvious that these vectors are independent because each has a nonzero entry where the other has a zero.
- To show

 $\text{Span} \{[1, 0, 2, 0], [0, -1, 0, -2]\} = \text{Span} \{[1, 0, 2, 0], [0, -1, 0, -2], [2, 2, 4, 4]\}$

 can use Superfluous-Vector Lemma:

 $$[2, 2, 4, 4] = 2 [1, 0, 2, 0] - 2 [0, -1, 0, -2]$$
Example: A simple basis for \(\mathbb{R}^3 \): the standard generators
\(\mathbf{e}_1 = [1, 0, 0], \mathbf{e}_2 = [0, 1, 0], \mathbf{e}_3 = [0, 0, 1] \).

- **Spanning:** For any vector \([x, y, z] \in \mathbb{R}^3\),

\[
[x, y, z] = x[1, 0, 0] + y[0, 1, 0] + z[0, 0, 1]
\]

- **Independent:** Suppose

\[
0 = \alpha_1 [1, 0, 0] + \alpha_2 [0, 1, 0] + \alpha_3 [0, 0, 1] = [\alpha_1, \alpha_2, \alpha_3]
\]

Then \(\alpha_1 = \alpha_2 = \alpha_3 = 0 \).

Instead of “standard generators”, we call them **standard basis vectors**. We refer to \(\{[1, 0, 0], [0, 1, 0], [0, 0, 1]\} \) as **standard basis** for \(\mathbb{R}^3 \).

In general the standard generators are usually called **standard basis vectors**.
Basis: Examples

Example: Another basis for \mathbb{R}^3: $[1, 1, 1], [1, 1, 0], [0, 1, 1]$

- **Spanning:** Can write standard generators in terms of these vectors:
 \[
 [1, 0, 0] = [1, 1, 1] - [0, 1, 1] \\
 [0, 1, 0] = [1, 1, 0] + [0, 1, 1] - [1, 1, 1] \\
 [0, 0, 1] = [1, 1, 1] - [1, 1, 0]
 \]

Since e_1, e_2, e_3 can be written in terms of these new vectors, every vector in $\text{Span } \{e_1, e_2, e_3\}$ is in span of new vectors. Thus \mathbb{R}^3 equals span of new vectors.

- **Linearly independent:** Write zero vector as linear combination:
 \[
 0 = x[1, 1, 1] + y[1, 1, 0] + z[0, 1, 1] = [x + y, x + y + z, x + z]
 \]

Looking at each entry, we get

\[
\begin{align*}
0 &= x + y \\
0 &= x + y + z \\
0 &= x + z
\end{align*}
\]

Plug $x + y = 0$ into second equation to get $0 = z$.

Plug $z = 0$ into third equation to get $x = 0$.

Plug $x = 0$ into first equation to get $y = 0$.

Thus the linear combination is trivial.
Basis: Examples in graphs

One kind of basis in a graph G: a set S of edges forming a spanning forest.

- **Spanning**: for each edge xy in G, there is an x-to-y path consisting of edges of S.
- **Independent**: no cycle consisting of edges of S
Towards showing that every vector space has a basis

We would like to prove that every vector space V has a basis.

The Grow algorithm and the Shrink algorithm each provides a way to prove this, but we are not there yet:

- The Grow-Algorithm Corollary implies that, if the Grow algorithm terminates, the set of vectors it has selected is a basis for the vector space V. However, we have not yet shown that it always terminates!

- The Shrink-Algorithm Corollary implies that, if we can run the Shrink algorithm starting with a finite set of vectors that spans V, upon termination it will have selected a basis for V. However, we have not yet shown that every vector space V is spanned by some finite set of vectors!
Computational problems involving finding a basis

Two natural ways to specify a vector space \mathcal{V}:

1. Specifying generators for \mathcal{V}.
2. Specifying a homogeneous linear system whose solution set is \mathcal{V}.

Two Fundamental Computational Problems:

Computational Problem: Finding a basis of the vector space spanned by given vectors

- **input:** a list $[v_1, \ldots, v_n]$ of vectors
- **output:** a list of vectors that form a basis for $\text{Span} \{v_1, \ldots, v_n\}$.

Computational Problem: Finding a basis of the solution set of a homogeneous linear system

- **input:** a list $[a_1, \ldots, a_n]$ of vectors
- **output:** a list of vectors that form a basis for the set of solutions to the system $a_1 \cdot x = 0, \ldots, a_n \cdot x = 0$
Unique representation

Recall idea of coordinate system for a vector space \(\mathcal{V} \):

- Generators \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) of \(\mathcal{V} \)
- Every vector \(\mathbf{v} \) in \(\mathcal{V} \) can be written as a linear combination
 \[
 \mathbf{v} = \alpha_1 \mathbf{a}_1 + \cdots + \alpha_n \mathbf{a}_n
 \]
- We represent vector \(\mathbf{v} \) by its coordinate representation \([\alpha_1, \ldots, \alpha_n] \)

Question: How can we ensure that each point has only one coordinate representation?

Answer: The generators \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) should form a basis.

Unique-Representation Lemma Let \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) be a basis for \(\mathcal{V} \). For any vector \(\mathbf{v} \in \mathcal{V} \), there is exactly one representation of \(\mathbf{v} \) in terms of the basis vectors.
Uniqueness of representation in terms of a basis

Unique-Representation Lemma: Let \(a_1, \ldots, a_n \) be a basis for \(V \). For any vector \(v \in V \), there is exactly one representation of \(v \) in terms of the basis vectors.

Proof: Let \(v \) be any vector in \(V \).

The vectors \(a_1, \ldots, a_n \) span \(V \), so there is at least one representation of \(v \) in terms of the basis vectors.

Suppose there are two such representations:

\[
v = \alpha_1 a_1 + \cdots + \alpha_n a_n = \beta_1 a_1 + \cdots + \beta_n a_n
\]

We get the zero vector by subtracting one from the other:

\[
0 = \alpha_1 a_1 + \cdots + \alpha_n a_n - (\beta_1 a_1 + \cdots + \beta_n a_n) \\
= (\alpha_1 - \beta_1) a_1 + \cdots + (\alpha_n - \beta_n) a_n
\]

Since the vectors \(a_1, \ldots, a_n \) are linearly independent, the coefficients \(\alpha_1 - \beta_1, \ldots, \alpha_n - \beta_n \) must all be zero, so the two representations are really the same.

QED
Unique-Representation Lemma Let a_1, \ldots, a_n be a basis for V. For any vector $v \in V$, there is exactly one representation of v in terms of the basis vectors.

A basis for a graph is a spanning forest. Unique Representation shows that, for each edge xy in the graph,

- there is an x-to-y path in the spanning forest, and
- there is only one such path.
Change of basis

Suppose we have a basis \(a_1, \ldots, a_n \) for some vector space \(V \).

How do we go

- from a vector \(b \) in \(V \)
- to the coordinate representation \(u \) of \(b \) in terms of \(a_1, \ldots, a_n \)?

By linear-combinations definition of matrix-vector multiplication,

\[
\begin{bmatrix}
a_1 & \cdots & a_n
\end{bmatrix}
\begin{bmatrix}
u
\end{bmatrix}
=
\begin{bmatrix}
b
\end{bmatrix}
\]

By Unique-Representation Lemma, \(u \) is the only solution to the equation

\[
\begin{bmatrix}
a_1 & \cdots & a_n
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
=
\begin{bmatrix}
b
\end{bmatrix}
\]

so we can obtain \(u \) by using a matrix-vector equation solver.

Function \(f : \mathbb{R}^n \rightarrow V \) defined by \(f(x) =
\begin{bmatrix}
a_1 & \cdots & a_n
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
\) is

- onto (because \(a_1, \ldots, a_n \) are generators for \(V \))
- one-to-one (by Unique-Representation Lemma)

so \(f \) is an invertible function.
Change of basis

Now suppose \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) is one basis for \(V \) and \(\mathbf{c}_1, \ldots, \mathbf{c}_k \) is another.

Define \(f(\mathbf{x}) = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \mathbf{x} \) and define \(g(\mathbf{y}) = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k \end{bmatrix} \mathbf{y} \).

Then both \(f \) and \(g \) are invertible functions.

The function \(f^{-1} \circ g \) maps

- from coordinate representation of a vector in terms of \(\mathbf{c}_1, \ldots, \mathbf{c}_k \)
- to coordinate representation of a vector in terms of \(\mathbf{a}_1, \ldots, \mathbf{a}_n \)

In particular, if \(V = \mathbb{F}^m \) for some \(m \) then

\(f \) invertible implies that \(\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \) is an invertible matrix.

\(g \) invertible implies that \(\begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k \end{bmatrix} \) is an invertible matrix.

Thus the function \(f^{-1} \circ g \) has the property

\[
(f^{-1} \circ g)(\mathbf{x}) = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k \end{bmatrix} \mathbf{x}
\]
Change of basis

Proposition: If $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and $\mathbf{c}_1, \ldots, \mathbf{c}_k$ are bases for \mathbb{F}^m then multiplication by the matrix

$$B = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_k \end{bmatrix}$$

maps

- from the representation of a vector with respect to $\mathbf{c}_1, \ldots, \mathbf{c}_k$
- to the representation of that vector with respect to $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Conclusion: Given two bases of \mathbb{F}^m, there is a matrix B such that multiplication by B converts from one coordinate representation to the other.

Remark: Converting between vector itself and its coordinate representation is a special case:

- Think of the vector itself as coordinate representation with respect to standard basis.
Change of basis: simple example

Example: To map from coordinate representation with respect to $[1, 2, 3], [2, 1, 0], [0, 1, 4]$ to coordinate representation with respect to $[2, 0, 1], [0, 1, -1], [1, 2, 0]$ multiply by the matrix

$$
\begin{bmatrix}
2 & 0 & 1 \\
0 & 1 & 2 \\
1 & -1 & 0
\end{bmatrix}^{-1}
\begin{bmatrix}
1 & 2 & 0 \\
2 & 1 & 1 \\
3 & 0 & 4
\end{bmatrix}
$$

which is

$$
\begin{bmatrix}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3} & -\frac{4}{3} \\
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 0 \\
2 & 1 & 1 \\
3 & 0 & 4
\end{bmatrix}
$$

which is

$$
\begin{bmatrix}
-1 & 1 & -\frac{5}{3} \\
-4 & 1 & -\frac{17}{3} \\
3 & 9 & \frac{10}{3}
\end{bmatrix}
$$
As application of change of basis, we show how to synthesize a camera view from a set of points in three dimensions, taking into account perspective. The math will be useful in next lab, where we will go in the opposite direction, removing perspective from a real image.

We start with the points making up a wire cube:

For reasons that will become apparent, we translate the cube, adding $(1,1,8)$ to each point.

How does a camera (or an eye) see these points?
Simplified model of a camera:

- There is a point called the *camera center*.
- There is an image sensor array in the back of the camera.
- Photons bounce off objects in the scene and travel through the camera center to the image sensor array.
- A photon from the scene only reaches the image sensor array if it travels in a straight line through the camera center.
- The image ends up being inverted.
Even more simplified camera model

Even simpler model to avoid the inversion:

- The image sensor array is between the camera center and the scene.
- The image sensor array is located in a plane, called the *image plane*.
- A photon from the scene is detected by the sensor array only if it is traveling in a straight line towards the camera center.
- The sensor element that detects the photon is the one intersected by this line.
- Need a function that maps from point p in world to corresponding point q in image plane.
Camera coordinate system

Camera-oriented basis helps in mapping from world points to image-plane points:

- The origin is defined to be the camera center. (That’s why we translated the wire-frame cube.)
- The first vector a_1 goes horizontally from the top-left corner of a sensor element to the top-right corner.
- The second vector a_2 goes vertically from the top-left corner of a sensor element to the bottom-left corner.
- The third vector a_3 goes from the origin (the camera center) to the bottom-left corner of sensor element (0,0).
From world point to camera-plane point

Side view (we see only the edge of the image plane)

- Have a point p in the world
- Express it in terms of a_1, a_2, a_3
- Consider corresponding point q in image plane.
- Similar triangles \Rightarrow coordinates of q

Summary: Given coordinate representation (x_1, x_2, x_3) in terms of a_1, a_2, a_3, the coordinate representation of the corresponding point in image plane is $(x_1/x_3, x_2/x_3, x_3/x_3)$. I call this *scaling down*.
Converting to pixel coordinates

Converting from a point \((x_1, x_2, x_3)\) in the image plane to pixel coordinates

- Drop third entry \(x_3\) (it is always equal to 1)
From world coordinates to camera coordinates to pixel coordinates

Write basis vectors of camera coordinate system using world coordinates

For each point \(\mathbf{p} \) in the wire-frame cube,
- find representation in \(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \)
- scale down to get corresponding point in image plane
- convert to pixel coordinates by dropping third entry \(x_3 \)
Wiimote whiteboard

For location of infrared point, wiimote provides coordinate representation in terms of its camera basis).

To use as a mouse, need to find corresponding location on screen (coordinate representation in terms of screen basis)

How to transform from one coordinate representation to the other?

Can do this using a matrix H.

The challenge is to calculate the matrix H.

Can do this if you know the camera coordinate representation of four points whose screen coordinate representations are known.

You’ll do exactly the same computation but for a slightly different problem....
Removing perspective

Given an image of a whiteboard, taken from an angle...
synthesize an image from straight ahead with no perspective
Camera coordinate system

We use same camera-oriented basis $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$:

- The origin is the camera center.
- The first vector \mathbf{a}_1 goes horizontally from the top-left corner of the whiteboard element to the top-right corner.
- The second vector \mathbf{a}_2 goes vertically from the top-left corner of whiteboard to the bottom-left corner.
- The third vector \mathbf{a}_3 goes from the origin (the camera center) to the top-left corner of sensor element (0,0).
Converting from one basis to another

In addition, we define a *whiteboard basis* $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$

- The origin is the camera center.

- The first vector \mathbf{c}_1 goes horizontally from the top-left corner of whiteboard to top-right corner.

- The second vector \mathbf{c}_2 goes vertically from the top-left corner of whiteboard to the bottom-left corner.

- The third vector \mathbf{c}_3 goes from the origin (the camera center) to the top-right corner of whiteboard.
Converting between different basis representations

Start with a point p written in terms of in camera coordinates

$$p = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

We write the same point p in the whiteboard coordinate system as

$$p = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Combining the two equations, we obtain

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
Let A and C be the two matrices. As before, C has an inverse C^{-1}. Multiplying equation on the left by C^{-1}, we obtain

$$\begin{bmatrix} C^{-1} \\ A \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} C^{-1} \\ C \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Since C^{-1} and C cancel out, we obtain

$$\begin{bmatrix} C^{-1} \\ A \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

We have shown that there is a matrix H (namely $H = C^{-1}A$) such that

$$H \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
From pixel coordinates to whiteboard coordinates

\[
\begin{align*}
(x_1, x_2) & \quad \text{pixel coordinates} \\
\downarrow & \\
(x_1, x_2, 1) & \quad \text{represent point in image plane} \\
\downarrow & \\
H \cdot (x_1, x_2, 1) & \quad \text{in terms of camera basis} \\
\downarrow & \\
(y_1, y_2, y_3) & \quad \text{change to representation} \\
\downarrow & \\
(y_1/y_3, y_2/y_3, y_3/y_3) & \quad \text{in terms of whiteboard basis} \\
\downarrow & \\
(y_1/y_3, y_2/y_3) & \quad \text{move to corresponding point} \\
\downarrow & \\
(y_1/y_3, y_2/y_3) & \quad \text{in whiteboard plane} \\
\downarrow & \\
(y_1/y_3, y_2/y_3) & \quad \text{get coordinates within whiteboard}
\end{align*}
\]
How to almost compute H

Write $H = \begin{bmatrix} h_{y_1,x_1} & h_{y_1,x_2} & h_{y_1,x_3} \\ h_{y_2,x_1} & h_{y_2,x_2} & h_{y_2,x_3} \\ h_{y_3,x_1} & h_{y_3,x_2} & h_{y_3,x_3} \end{bmatrix}$

The h_{ij}’s are the unknowns.

To derive equations, let p be some point on the whiteboard, and let q be the corresponding point on the image plane. Let $(x_1, x_2, 1)$ be the camera coordinates of q, and let (y_1, y_2, y_3) be the whiteboard coordinates of q. We have

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} h_{y_1,x_1} & h_{y_1,x_2} & h_{y_1,x_3} \\ h_{y_2,x_1} & h_{y_2,x_2} & h_{y_2,x_3} \\ h_{y_3,x_1} & h_{y_3,x_2} & h_{y_3,x_3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Multiplying out, we obtain

$$y_1 = h_{y_1,x_1}x_1 + h_{y_1,x_2}x_2 + h_{y_1,x_3}$$

$$y_2 = h_{y_2,x_1}x_1 + h_{y_2,x_2}x_2 + h_{y_2,x_3}$$

$$y_3 = h_{y_3,x_1}x_1 + h_{y_3,x_2}x_2 + h_{y_3,x_3}$$
Almost computing H

\[
\begin{align*}
y_1 &= h_{y_1,x_1} x_1 + h_{y_1,x_2} x_2 + h_{y_1,x_3} \\
y_2 &= h_{y_2,x_1} x_1 + h_{y_2,x_2} x_2 + h_{y_2,x_3} \\
y_3 &= h_{y_3,x_1} x_1 + h_{y_3,x_2} x_2 + h_{y_3,x_3}
\end{align*}
\]

Whiteboard coordinates of the original point p are $(y_1/y_3, y_2/y_3, 1)$. Define

\[
\begin{align*}
w_1 &= y_1/y_3 \\
w_2 &= y_2/y_3
\end{align*}
\]

so the whiteboard coordinates of p are $(w_1, w_2, 1)$.

Multiplying through by y_3, we obtain

\[
\begin{align*}
w_1 y_3 &= y_1 \\
w_2 y_3 &= y_2
\end{align*}
\]

Substituting our expressions for y_1, y_2, y_3, we obtain

\[
\begin{align*}
w_1 (h_{y_3,x_1} x_1 + h_{y_3,x_2} x_2 + h_{y_3,x_3}) &= h_{y_1,x_1} x_1 + h_{y_1,x_2} x_2 + h_{y_1,x_3} \\
w_2 (h_{y_3,x_1} x_1 + h_{y_3,x_2} x_2 + h_{y_3,x_3}) &= h_{y_2,x_1} x_1 + h_{y_2,x_2} x_2 + h_{y_2,x_3}
\end{align*}
\]
\[w_1(h_{y_3,x_1} x_1 + h_{y_3,x_2} x_2 + h_{y_3,x_3}) = h_{y_1,x_1} x_1 + h_{y_1,x_2} x_2 + h_{y_1,x_3} \]
\[w_2(h_{y_3,x_1} x_1 + h_{y_3,x_2} x_2 + h_{y_3,x_3}) = h_{y_2,x_1} x_1 + h_{y_2,x_2} x_2 + h_{y_2,x_3} \]

Multiplying through and moving everything to the same side, we obtain

\[(w_1 x_1) h_{y_3,x_1} + (w_1 x_2) h_{y_3,x_2} + w_1 h_{y_3,x_3} - x_1 h_{y_1,x_1} - x_2 h_{y_1,x_2} - 1 h_{y_1,x_3} = 0 \]
\[(w_2 x_1) h_{y_3,x_1} + (w_2 x_2) h_{y_3,x_2} + w_2 h_{y_3,x_3} - x_1 h_{y_2,x_1} - x_2 h_{y_2,x_2} - 1 h_{y_2,x_3} = 0 \]

Thus we get two linear equations in the unknowns. The coefficients are expressed in terms of \(x_1, x_2, w_1, w_2 \).

For four points, get eight equations. Need one more...
One more equation

We can’t pin down H precisely.

This corresponds to the fact that we cannot recover the scale of the picture (a tiny building that is nearby looks just like a huge building that is far away).

Fortunately, we don’t need the true H.

As long as the H we compute is a scalar multiple of the true H, things will work out. To arbitrarily select a scale, we add the equation $h_{y_1,x_1} = 1$.
Once you know H

1. For each point q in the representation of the image, we have the camera coordinates $(x_1, x_2, 1)$ of q. We multiply by H to obtain the whiteboard coordinates (y_1, y_2, y_3) of the same point q.

2. Recall the situation as viewed from above:

 ![Diagram](image)

 The whiteboard coordinates of the corresponding point p on the whiteboard are $(y_1/y_3, y_2/y_3, 1)$. Use this formula to compute these coordinates.

3. Display the updated points with the same color matrix
Simplified Exchange Lemma

We need a tool to iteratively transform one set of generators into another.

- You have a set S of vectors.
- You have a vector z you want to inject into S.
- You want to maintain same size so must eject a vector from S.
- You want the span to not change.

Exchange Lemma tells you how to choose vector to eject.

Simplified Exchange Lemma:

- Suppose S is a set of vectors.
- Suppose z is a nonzero vector in $\text{Span } S$.
- Then there is a vector w in S such that

\[
\text{Span } (S \cup \{z\} - \{w\}) = \text{Span } S
\]
Simplified Exchange Lemma proof

Simplified Exchange Lemma: Suppose S is a set of vectors, and z is a nonzero vector in $\text{Span } S$. Then there is a vector w in S such that $\text{Span } (S \cup \{z\} - \{w\}) = \text{Span } S$.

Proof: Let $S = \{v_1, \ldots, v_n\}$. Since z is in $\text{Span } S$, can write

$$z = \alpha_1 v_1 + \cdots + \alpha_n v_n$$

By Superfluous-Vector Lemma, $\text{Span } (S \cup \{z\}) = \text{Span } S$.
Since z is nonzero, at least one of the coefficients is nonzero, say α_i.
Rewrite as

$$z - \alpha_1 v_1 - \cdots - \alpha_i v_{i-1} - \alpha_i v_i - \cdots - \alpha_n v_n = \alpha_i v_i$$

Divide through by α_i:

$$\frac{1}{\alpha_i}z - \left(\frac{\alpha_1}{\alpha_i}\right) v_1 - \cdots - \left(\frac{\alpha_i}{\alpha_i}\right) v_{i-1} - \left(\frac{\alpha_i}{\alpha_i}\right) v_i - \cdots - \left(\frac{\alpha_n}{\alpha_i}\right) v_n = v_i$$

By Superfluous-Vector Lemma, $\text{Span } (S \cup \{z\}) = \text{Span } (S \cup \{z\} - \{w\})$. QED
Simplified Exchange Lemma: Suppose S is a set of vectors, and z is a nonzero vector in $\text{Span } S$. Then there is a vector w in S such that $\text{Span } (S \cup \{z\} - \{w\}) = \text{Span } S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Need a way to protect some elements from being taken out.
Exchange Lemma

Simplified Exchange Lemma: Suppose S is a set of vectors, and z is a nonzero vector in $\text{Span } S$. Then there is a vector w in S such that $\text{Span } (S \cup \{z\} - \{w\}) = \text{Span } S$.

Need to enhance this lemma. Set of *protected* elements is A:

Exchange Lemma:
- Suppose S is a set of vectors and A is a subset of S.
- Suppose z is a vector in $\text{Span } S$ such that $A \cup \{z\}$ is linearly independent.
- Then there is a vector $w \in S - A$ such that $\text{Span } S = \text{Span } (S \cup \{z\} - \{w\})$

Now, not enough that z be nonzero—need A to be linearly independent.
Exchange Lemma proof

Exchange Lemma: Suppose S is a set of vectors and A is a subset of S. Suppose z is a vector in Span S such that $A \cup \{z\}$ is linearly independent. Then there is a vector $w \in S - A$ such that Span $S = \text{Span} \ (S \cup \{z\} - \{w\})$

Proof: Let $S = \{v_1, \ldots, v_k, w_1, \ldots, w_\ell\}$ and $A = \{v_1, \ldots, v_k\}$. Since z is in Span S, can write

$$z = \alpha_1 v_1 + \cdots + \alpha_k v_k + \beta_1 w_1 + \cdots + \beta_\ell w_\ell$$

By Superfluous-Vector Lemma, Span $(S \cup \{z\}) = \text{Span} \ S$. If coefficients $\beta_1, \ldots, \beta_\ell$ were all zero then we would have $z = \alpha_1 v_1 + \cdots + \alpha_k v_k$, contradicting the linear independence of $A \cup \{z\}$. Thus one of the coefficients $\beta_1, \ldots, \beta_\ell$ must be nonzero... say β_1. Rewrite as

$$z - \alpha_1 v_1 - \cdots - \alpha_k v_k - \beta_2 w_2 - \cdots - \beta_\ell w_\ell = \beta_1 w_1$$

Divide through by β_1:

$$\frac{1}{\beta_1}z - \frac{\alpha_1}{\beta_1} v_1 - \cdots - \frac{\alpha_k}{\beta_1} v_k - \frac{\beta_2}{\beta_1} w_2 - \cdots - \frac{\beta_\ell}{\beta_1} w_\ell = w_1$$

By Superfluous-Vector Lemma, Span $(S \cup \{z\}) = \text{Span} \ (S \cup \{z\} - \{w_1\})$. QED
Proof of correctness of the Grow algorithm for Minimum Spanning Forest

```
def Grow(G):
    F := ∅
    consider the edges in increasing order
    for each edge e:
        if e’s endpoints are not yet connected
            add e to F.

    Let F = forest found by algorithm.
    Let F* = truly minimum-weight spanning forest.
    **Goal:** show that F = F*

    Assume for a contradiction that they are different.
```

We will show that this greedy algorithm chooses the minimum-weight spanning forest.
(Assume all weights are distinct.)
Proof of correctness of the Grow algorithm for Minimum Spanning Forest

Assume for a contradiction that F and F^* are different.
Let e_1, e_2, \ldots, e_m be the edges of G in increasing order.
Let e_k be the minimum-weight edge on which F and F^* disagree.
Let A be the set of edges before e_k that are in both F and F^*.
Since at least one of the forests includes all of A and also e_k, we know $A \cup \{e_k\}$ has no cycles (is linearly independent).
Consider the moment when the Grow algorithm considers e_k. So far, the algorithm has chosen the edges in A, and e_k does not form a cycle with edges in A, so the algorithm must also choose e_k.
Since F and F^* differ on e_k, we infer that e_k is not in F^*.
Now we use the Exchange Lemma.

- A is a subset of F^*.
- $A \cup \{e_k\}$ is linearly independent.
- Therefore there is an edge e_n in $F^* - A$ such that
\[
\text{Span } (F^* \cup \{e_k\} - \{e_n\}) = \text{Span } F^*
\]
That is, $F^* \cup \{e_k\} - \{e_n\}$ is also spanning.
But e_k is cheaper than e_n so F^* is not min-weight solution. **Contradiction.** QED.