
From loop to comprehension in Python
Philip Klein

Basics

Let’s say you want a list consisting of the first 10 nonnegative integers. Here’s the traditional
way to write this.

>>> L = []

>>> i = 0

>>> while i < 10:

... L.append(i)

... i += 1

...

>>> L

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Python provides ranges, which make this easier. A slightly slicker way to write it is to use a
for-loop together with a range:

>>> L = []

>>> for i in range(10):

... L.append(i)

...

>>> L

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Here the variable i is called the loop control variable.
There is an even easier way to get this list: convert the range to a list:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Now let’s consider a different goal. We still want a list but instead of the list consisting of
the integers from 0 through 9, we want the list that consists of squares of these integers. The
traditional way to obtain this list is with a for-loop:

>>> L = []

>>> for i in range(10):

... L.append(i*i)

...

>>> L

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

However, Python provides a more concise way to construct this list, namely a list comprehension:

>>> [i*i for i in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

1



Let’s compare the two forms. In each form, there is a loop control variable (and in each form
the variable is i). In each form, the variable iterates over the elements of range(10). These
similarities are reflected by the occurence of the code fragment for i in range(10) in both
forms.

In both forms, the expression i*i appears. This expression specifies how a typical value of
the final list is derived from the corresponding value of the control variable.

One difference that throws people off a bit is that in the comprehension that expression
appears before the part starting for i ... whereas in the loop that expression comes after.

The advantage of the comprehension over the loop is that it more precisely and directly
captures the goal. In contrast, the loop code includes two statements—the initial assignment of
the empty list to L and the appending of each element—that are only indirectly related to the
goal.

The two statements that are in the loop and not in the comprehension—the statement ini-
tializing the variable L and the statement appending an element to the list that L refers to—are
there because a loop is a more general computation than a comprehension. A list comprehen-
sion is only useful for creating a list consisting of elements derived one at a time from a control
variable. Since it more specifically targets this goal, it requires less specification to achieve it.
In fact, using a comprehension tells Python more—and, as a result, Python can usually execute
a list comprehension more quickly than it can execute the corresponding loop code.

Note also that the comprehension doesn’t need a variable L to keep track of the growing list.
The value of the comprehension is the list. (Of course, you could choose to assign the value to
a variable—but you could also use it as the argument to a procedure or more generally include
it in a larger expression.)

Variations in the expression for a typical element

The expression specifying a typical element need not depend on the loop variable. Let’s create
a list of pseudorandom numbers using Python’s random module. First, the loop:

>>> from random import random

>>> L = []

>>> for i in range(10):

... L.append(random())

...

>>> L

[0.5816737902086452, ... , 0.006916891440394313]

Now the comprehension:

>>> [random() for i in range(10)]

[0.9971398088326107, ... , 0.9061110236553993]

In each case, the expression specifying a typical element is random(), which doesn’t depend on
the value of the control variable. For this reason, in each form we can replace the control variable
with an underscore, which tells Python we don’t want to name the control variable because we
don’t need its value.

2



>>> [random() for _ in range(10)]

[0.5128972594823706, ... , 0.06741888378048344]

The expression specifying a typical element can depend on variables defined outside the compre-
hension. Here’s an example in which we assign to a variable c, and then evaluate a comprehension
in which the expression specifying a typical element depends on the value of c:

>>> c = 2

>>> [c*i for i in range(10)]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Similarly, the expression specifying a typical element can include a procedure defined previously:

>>> def f(x): return 2*x

...

>>> [f(i) for i in range(10)]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Conditionals

Now we introduce conditionals. Let’s say we want the list to contain the squares of only some of
the nonnegative integers less than 10—those that are not divisible by 3. Here’s the loop form:

>>> L = []

>>> for i in range(10):

... if i % 3 != 0:

... L.append(i*i)

...

>>> L

[1, 4, 16, 25, 49, 64]

All we did was put the append statement inside an if (or conditional) statement. We can
achieve the same result in a comprehension:

>>> [i*i for i in range(10) if i % 3 != 0]

[1, 4, 16, 25, 49, 64]

Nested loops and double comprehensions

What about nested loops? There are two kinds of lists one might want to obtain using a nested
loop. First, let’s create a list consisting of all pairs (i, j) where i is in range(10) and j is in
{2, 5, 9}. Here’s the loop form:

>>> L = []

>>> for i in range(10):

... for j in {2, 5, 9}:

... L.append((i,j))

...

3



>>> L

[(0, 9), (0, 2), (0, 5), (1, 9), (1, 2), (1, 5), (2, 9), (2, 2), (2,5),

(3, 9), (3, 2), (3, 5), (4, 9), (4, 2), (4, 5), (5, 9), (5, 2), (5, 5),

(6, 9), (6, 2), (6, 5), (7, 9), (7, 2), (7, 5), (8, 9), (8, 2), (8, 5),

(9, 9), (9, 2), (9, 5)]

Here’s the comprehension form:

>>> [(i,j) for i in range(10) for j in {2, 5, 9}]

[(0, 9), ... , (9, 5)]

In each case, we create one list whose elements have the form (i,j). I refer to a comprehension
of this form as a double comprehension.

Nested loops and nested comprehensions

In another use of nested loops, one might want to create a list of lists. Each iteration of the
inner loop builds a list, and the outer loop uses these lists as elements of a bigger list.

>>> list_of_lists = []

>>> for i in range(3):

... L = []

... for j in range(4):

... L.append(j)

... list_of_lists.append(L)

...

>>> list_of_lists

[[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]

In the example, each iteration of the inner loop creates a list [0,1,2,3], and the outer loop
creates a three-element list each element of which is [0,1,2,3]. This is a silly example since
the inner lists are all the same. Here’s a version in which the inner lists are different:

>>> list_of_lists = []

>>> for i in range(3):

... L = []

... for j in range(4):

... L.append(i*j)

... list_of_lists.append(L)

...

>>> list_of_lists

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6]]

We can simplify this code by replacing the inner loop with a comprehension:

>>> list_of_lists = []

>>> for i in range(3):

... list_of_lists.append([i*j for j in range(4)])

4



...

>>> list_of_lists

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6]]

In this example, each element appended to list of lists is the value of comprehension [i*j

for j in range(4)]. The expression i*j specifying the typical element of the list depends
not just on the control variable of the comprehension, j, but also on another variable, i, which
is assigned to outside the comprehension. In this case, that other variable i happens to be
the control variable of the outer loop, but that has no significance for the meaning of the
comprehension.

To make the dependence on i more explicit, I will define a procedure that takes x as an
argument, and use that procedure in the loop:

>>> def f(x): return [x*j for j in range(4)]

...

>>> list_of_lists = []

>>> for i in range(3):

... list_of_lists.append(f(i))

...

>>> list_of_lists

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6]]

When we look at this loop, we might recognize that it can be replaced by a comprehension:

>>> [f(i) for i in range(3)]

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6]]

Finally, this comprehension is equivalent to one in which the invocation of the procedure f is
replaced with the body of the procedure:

>>> [[i*j for j in range(4)] for i in range(3)]

[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6]]

This nested comprehension mimics the nested loop we started with. One syntactic difference is
that the specification of the outer comprehension occurs after the specification of the inner com-
prehension; in the nested loop, the specification of the outer loop occurs before the specification
of the inner loop.

Even those who are used to nested loops sometimes have difficulty writing nested compre-
hensions. Try writing the nested loop first, then moving the inner loop into a procedure. Then
you can separately (a) rewrite the procedure as a comprehension and (b) rewrite the outer loop
as a comprehension.

To review, there are two ways we might use a nested loop to construct a list. One is equivalent
to a double comprehension and the other is equivalent to a nested comprehension.

5


